You can load any pdf file from your local file system or through a URL.

Install PDF addon

npm install @llm-tools/embedjs-loader-pdf

Usage

Load from a local file

import { RAGApplicationBuilder } from '@llm-tools/embedjs';

import { OpenAiEmbeddings } from '@llm-tools/embedjs-openai';

import { HNSWDb } from '@llm-tools/embedjs-hnswlib';

import { PdfLoader } from '@llm-tools/embedjs-loader-pdf';



const app = await new RAGApplicationBuilder()

.setModel(SIMPLE_MODELS.OPENAI_GPT4_O)

.setEmbeddingModel(new OpenAiEmbeddings())

.setVectorDatabase(new HNSWDb())

.build();



app.addLoader(new PdfLoader({ filePathOrUrl: '/path/to/file.pdf' }))

Load from URL

import { RAGApplicationBuilder } from '@llm-tools/embedjs';

import { OpenAiEmbeddings } from '@llm-tools/embedjs-openai';

import { HNSWDb } from '@llm-tools/embedjs-hnswlib';

import { PdfLoader } from '@llm-tools/embedjs-loader-pdf';



const app = await new RAGApplicationBuilder()

.setModel(SIMPLE_MODELS.OPENAI_GPT4_O)

.setEmbeddingModel(new OpenAiEmbeddings())

.setVectorDatabase(new HNSWDb())

.build();



await app.addLoader(new PdfLoader({ filePathOrUrl: 'https://arxiv.org/pdf/1706.03762.pdf' }))

await app.query("What is the paper 'attention is all you need' about?");

Note that we do not support password protected pdf files.